Human Ecology

The Petroleum Industry & the Niger Delta The Ozone Layer, Green House Gases

Dr Njideka E. Kanu

The Niger Delta

- The Niger Delta region is situated at the apex of the Gulf of Guinea on the west coast of Africa and on Nigeria's South–South geopolitical zone
- The third largest wetland in the world and the largest in Africa
- It is home to some 31 million people, occupies a total area of about 75,000 km² and makes up 7.5% of Nigeria's land mass

The Niger Delta (2)

- The region consists of 9 oil–producing states (Abia, Akwa Ibom, Bayelsa, Cross River, Delta, Edo, Ondo, Imo and Rivers) and 185 local government areas
- Cuts across over 800 oil–producing communities with an extensive network of over 900 producing oil wells and several petroleum production–related facilities

Oil activities in the Niger delta

- Oil was first discovered in commercial quantities in Nigeria in 1956 at Oloibiri, about 90km west of Port Harcourt in what is now Bayelsa State; other discoveries soon followed and exports began in 1958, although significant quantities only began to flow from 1965
- Oil production rose rapidly in the 70s and by 1974, oil revenues constituted over 80% of total federal revenues and over 90% of export earnings

Oil activities in the Niger delta

- Nigeria is currently the largest oil producer in Africa, and the fifth largest in the Organization of Oil Producing Countries (OPEC).
- All of Nigeria's proven oil reserves are located in the coastal area of the Niger delta, in about 250 small (less than 50 million barrels) oil fields
- As a result, there is a need for a developed network of pipelines between the fields, and for constant exploration to augment existing oil reserves

The Petroleum Industry

• The Petroleum industry is basically made up of 2 activities:

-Oil exploration; and

-Oil exploitation

- Both activities include several contaminating processes, but the extent of these polluting processes depends on the environmental practices and technology used by the oil companies
- In the Niger delta, these practices have repeatedly been questioned

Oil Exploration activities

- Involves locating the oil several kilometres below the earth's surface
- Often begins with a 3-D seismic survey that requires a caravan of survey equipment, and the use of explosives like dynamites

Oil Exploration activities

- These carry particular risks for plant habitat, wildlife and human communities, and have been noted to cause:
 - Deforestation
 - Destruction of farm lands
 - Exposure to infectious disease agents like jungle yellow fever
 - Access to explosives (dynamites)
 - Cultural clashes with local populations
 - Possibilities of industrial accidents

Oil Exploitation Activities

- Once the oil is found in commercial quantity, oil exploitation begins with the drilling of oil wells
- This produces a large quantity of waste consisting of oil, drilling fluids and the byproducts of drilling, including water, drill cuttings and mud
- It is estimated that onshore oil production operations produce 60,000 to 300,000 gallons of cuttings and mud everyday, while offshore oil platforms use and discard nearly 400,000 gallons of water per day

AN OIL WELL

Environmental and Health Risks associated with Petroleum Exploration and Production

- Gas Flaring and Venting in the Niger Delta
- Petroleum Hydrocarbon Spills and Accidental Discharges in the Niger Delta
- Drilling Discharges and Petroleum–derived Chemical Wastes in the Niger Delta
- Petroleum Contamination of Soil, Sediment and Groundwater
- Human Health Risks Long term Respiratory effects, mutagenicity, carcinogenicity and chromosomal damage

The Ozone Layer

- Ozone is an allotrope of oxygen consisting of oxygen atoms (0₃)
- It occurs naturally in the atmosphere $0+0_2=0_3$
- The ozone layer is a region of Earth's stratosphere that absorbs most (97-99%) of the Sun's ultraviolet (UV) radiation which otherwise would potentially damage exposed life forms near the surface
- It contains high concentrations of ozone

Ozone Depletion

- Is a decline in the total amount of ozone in the earth's stratosphere
- 0₃ can be destroyed by certain free radical catalysts e.g.
- Hydroxyl radical (OH)
- Nitric oxide radical (NO)
- Chlorine atom (Cl)
- Bromine (Br)

Occurrence of free radicals

These occur in natural forms e.g.

- i) Chloro-Fluoro-Carbons (CFC) as refrigerants
- ii) CCl₄ as fire extinguishers, industrial solvent, agric fumigants, pesticide, in petroleum refining, pharmaceutical production
- iii) Methyl chloroform in cleaning metals
- iv) Halons as fire suppressants
- v) Methyl bromide as pesticide
- vi) CFC also contribute to Green House Gases in global warming

Effects of Ozone Depletion

- Ozone layer protects the earth from the sun's UV rays and excessive heat
- Depletion thus leads to the following effects:
- (a) On human health
 - (i) Melanoma, actinic keratoses
 - (ii) Premature ageing
 - (iii) Immune suppression
 - (iv) Eye problems

Effects of Ozone Depletion (2)

- (b) Effects on plants
 - (i) Plant diseases
 - (ii) Reduced yield and decease in food security
- (c) Aquatic Ecosystem
- (d) Global climate change and global warming
- (e) Socioeconomic effect e.g. damage to properties

Protection from Ozone depletion

- (a) Personal Protection
 - (i) Sunglasses
 - (ii) Hat with wide brim
 - (iii) Tightly woolen, loose fitting clothes
 - (iv) Sunscreen cream
- (b) Controlling air pollution, elimination by substitution and change of process or process redesign
- (c) Policy and legislation

Protection of the Ozone Layer

(d) Conventions

- 1997- Kyoto protocol on ozone layer depletion;
- 1987- Montreal protocol on ozone layer depletion
- 1985- Vienna convention for the protection of ozone layer
- Helsinki Declaration
- (e) World ozone layer day;
 - Ozone monitoring a necessity to socioeconomic development: 2007 theme;
 - Protect the ozone layer, save life on earth; 2006 theme

Greenhouse Gases

- Greenhouse chemicals are naturally occurring chemicals which permit incoming solar radiation to enter the earth's atmosphere and reach the earth's surface, but prevent re-radiated infrared energy from leaving earth's atmosphere
- Without these gases, the earth's temperature would have been -17°C which is significantly lower than the observed mean global temperature of 15°C

Greenhouse Gases (2)

- Greenhouse effect is described "like the glass planes in a greenhouse", certain gases in the earth's atmosphere permit the sun's radiation to heat the earth
- At the same time, these gases retard the escape into space of the infrared energy radiated back out of earth
- Normally greenhouse effect is a process that makes the earth habitable
- But the modern trend of increasing these gases into the atmosphere is threatening the very existence of earth because of their excessive release through anthropogenic sources from technology

Greenhouse Gases (3)

- The major Greenhouse gases are
 - Carbon dioxide (CO₂)
 - Methane (CH_4)
 - Nitrous Oxide (N₂O)
 - Water Vapour (H₂O)
 - Chlorofluorocarbons (CFCs)
- Majority of them are from combustion sources while others are from biogenic activities

CO₂ (Carbon Dioxide)

- >60% greenhouse effect
- 280 370 ppmv (31% increase since mid 19th Century)
- Sources
 - Fossil fuels (coal, oil, gas) combustion for transport, manufacturing, heating, cooling, generating energy
 - Biomass burning (firewood, bush burning, farm residues)
 - Land use changes (deforestation, desertification, farming, settlements etc)

CH₄ (Methane)

- up to 20% greenhouse effect
- 700 1760 ppbv (151% increase since mid 19th C)
- Sources
 - Decaying organic matter, garbage
 - Wetlands, swamp rice
 - Livestock production
 - Fossil fuel production and combustion
 - Biomass burning
 - Waste water treatment

N₂0 (Nitrous Oxide)

- 6% greenhouse effect
- 276 316 ppbv (175 increase since mid 19th Century)
- Sources
 - naturally from soils and the ocean
 - Soil cultivation; nitrogen fertilizers
 - Livestock production
 - Chemical industry; nylon manufacture Fossil fuel and biomass burning

Water vapour

- Water vapour is the most efficient greenhouse gas which is added to the atmosphere through Evapotranspiration processes
- Temperature governs its concentration in the atmosphere

Chlorofluorocarbons (CFCs)

- These include Freon, Cl, Fl, Br, I compds, CFC I and CFC II
- They are of more recent origin (introduced in 1928)
- Their effects were not known before 1950s
- Up to 14% greenhouse effect
- They are 30,000 times more effective in absorbing radiation than CO₂

Chlorofluorocarbons (CFCs)

- They contribute to greenhouse effect as well as destruction of ozone layer
 - Sources
 - Exclusively Man-made and are widely used as;
 - propellants in aerosol cans,
 - manufacture of plastic foams, solvents, pesticides
 - Refrigerants

Thank You